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It is shown that the point and space symmetry of bicrystals can be classified according
to established schemes of symmetry groups. The symmetry of the pattern created by
the lattices of two crystals comprising a bicrystal is considered first. This symmetry
depends on the symmetry of the component lattices and their relative orientation and
position. A space group can be assigned to such a pattern by using the schemes of
crystallographic rods, crystallographic layers, or conventional space groups (Shubni-
w kov & Koptsik 1974) respectively, according to whether one, two or three non-collinear
o translation symmetry axes are present in the pattern. Patterns are considered to be
dichromatic by regarding one lattice arbitrarily as white and the other black; space
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450 R.C. POND AND W.BOLLMANN

groups can then be expressed by using colour symmetry formulation. The variation of
the symmetry of dichromatic patterns as the component lattices are displaced relatively
is discussed. For a pattern with fixed relative orientation of the component lattices the
number of non-collinear translation axes is invariant to changes of relative position.
However, the point symmetry of the pattern varies according to a conservation rule; the
product n;7;is invariant with relative displacement where 7, is the numerical expression
of the point symmetry for the pattern created by a given relative displacement away
from a holosymmetric pattern and 7; is the number of crystallographically equivalent
patterns obtained by symmetry related displacements. The product is equal to zy, the
numerical expression of the point symmetry of the holosymmetric pattern, i.e. n;r; = nn.

Bicrystals are supposed to be obtained from dichromatic patterns by choosing the
orientation and location of an interface plane and locating white bases at white lattice
points on one side of the interface and black bases at black sites on the other. Bicrystals
are therefore regarded as three-dimensional objects containing a unique plane, the
interface, and the adjacent crystals can have different compositions and structures.
Depending on the symmetry of a dichromatic pattern and the choice of interface plane
there can be two, one or no translation symmetry axes in the interface plane, and colour
symmetry groups can be assigned to bicrystals according to the schemes of two sided
layers, bands or rosettes (Shubnikov & Koptsik 1974) respectively. The variation of
bicrystal point symmetry with relative displacement of the adjacent crystals follows a
conservation rule analogous to that for the case of dichromatic patterns.

The symmetry of the physical properties of bicrystals is considered by invoking
Neumann’s principle. Computer calculations indicate that the relative displacements
of adjacent crystals in mechanically stable polymeric and metallic bicrystals are such
that bicrystal symmetry is often lower than holosymmetric. The relative position of
adjacent crystals in a bicrystal is an important additional degree of freedom compared
to a single crystal. For bicrystals which have at least one-dimensional translation
symmetry and point symmetry higher than 1, equivalent bicrystal structures can exist
corresponding to crystallographically equivalent relative displacements away from a
holosymmetric structure. The number of equivalent bicrystals in a set, r;, depends on
the symmetry of these bicrystals and the holosymmetric form, and is given by the rule
r; = nn/n;. Such equivalent bicrystals have degenerate energy, and it is possible for

omains of equivalent structures, separated by special interfacial dislocations, to exist in
a physical bicrystal. The Burgers vectors of these dislocations can have very small mag-
nitudes and the dissociation of perfect interfacial dislocations into special dislocations
is discussed.

1. INTRODUCGTION

No general theory is at present available relating the physical properties of interphase or grain
boundaries to their structure. The object of the present work is to point out that Neumann’s
principle applies to bicrystals as well as to single crystals, and to discuss in this context certain
physical properties of bicrystals, in particular their interfacial properties. Neumann’s principle is
a fundamental postulate of crystal physics (see, for example, Nye 1969) and may be stated as
follows for bicrystals: the symmetry elements of any physical property of a bicrystal must include
the symmetry elements of the point group of the bicrystal. A physical property consists of the
relation between certain measurable quantities associated with the bicrystal, for example, the
relation between incident and scattered X-ray intensities.

For the present purposes a bicrystal is considered to consist of two semi-infinite crystals sep-
arated by a unique plane, the interface. Point symmetry can always be assigned to a bicrystal,
but in addition, there may be one- or two-dimensional translation symmetry in the interface. As
far as the present authors are aware, no scheme has been specifically designed for classifying the
symmetry of bicrystals, although appropriate systems can certainly be found within the diverse
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BICRYSTAL SYMMETRY 451

framework of established crystallography. The major part of this work is to identify these latter
systems of symmetry classification and to present them so that the space and /or point symmetry of
any bicrystal can be readily classified. This scheme is completely general in the sense that the
adjacent crystals in a bicrystal of interest may have different structures and compositions.
However, to illustrate the development of this scheme we shall consider predominantly bicrystals
where the interface is a grain boundary between adjacent cubic crystals; this procedure is
especially helpful in studying bicrystals with high symmetry. The notation for symmetry classifi-
cation used in this work is the international coordinate system (Shubnikov & Koptsik 1974;
Neronova & Belov 1961).

Since details of the atomic positions in real bicrystals are not available at present, idealized
bicrystals and relaxed structures obtained by computer simulation are considered. In anidealized
bicrystal all atoms are located at the lattice sites of their parent crystal, i.e. there is no interfacial
strain field, and there is no thermal vibration. The manufacture and symmetry classification of
idealized bicrystals are discussed in §§ 2 and 4 respectively, and the symmetry of computer simu-
lated structures in §4. In several respects the symmetry of the pattern created by the lattices of the
two component crystals of a bircystal proves to be valuable, and this is considered in detail in
§3.

In §5 the symmetry of interfacial dislocation networks is considered since these can be an
intrinsic part of bicrystal structure. Moreover, these dislocations may have special significance
with regard to physical properties such as interfacial diffusion.

2. CRYSTALLOGRAPHY OF BICRYSTALS
2.1. Manufacture of idealized bicrystals

Consider a lattice, designated the ‘white’ lattice, which remains fixed in orientation and posi-
tion. A second lattice, designated ‘black’, has identical lattice parameters but can have any
orientation or position relative to the white. The pattern created by the black and white lattices is
called a dichromatic pattern and its symmetry depends on both the relative orientation and
position of the two component lattices. To manufacture an idealized bicrystal it is necessary (1)
to obtain the appropriate dichromatic pattern, (2) to specify the orientation of the boundary
plane, and (3) to locate atomic groups at the sites of the white lattice on one side of the boundary
and at the sites of the black lattice on the other. There are eight geometrical degrees of freedom
involved in this procedure as outlined below.

Let one white lattice site act as an arbitrarily chosen origin, and consider a vector [4k]] (using
the coordinate system of the white lattice) which passes through the origin. A dichromatic pattern
may be obtained by the operation {[%4l] 6}', which means that a lattice originally coincident with
the reference white lattice and with the same colour is rotated by an angle ¢ about [A£/] and
subsequently undergoes colour reversal from white to black (as represented by a prime). All
possible relative orientations of the black and white lattices can be obtained in this way, and three
degrees of geometrical freedom are associated with the specification of [#4/] and 6. The operation
{[#k[] 6} confers on the origin site, for example, both black and white colour; such sites are said to
be neutrally coloured.

Any displacement of the black lattice relative to the white after the operation {[/£/] 6} can be
characterized by the vector £, which is the displacement of the black lattice away from the neutral
origin position. Thus, any dichromatic pattern can be characterized by specifying the lattice

45-2
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452 R. C. POND AND W.BOLLMANN

parameters of the white lattice, [£k/] 6 and ¢. Three degrees of geometric freedom are associated
with the specification of ¢. (It is noted that there may be alternative but crystallographically
equivalent formulations [/4l] 6, depending on the crystal lattice symmetry (Warrington &
Bufalini 1971).) The final two degrees of geometric freedom in manufacturing a bicrystal are
associated with the specification of the boundary plane normal [ pgr]. When anidealized bicrystal
is manufactured as described above, the location of a boundary plane with normal[ pgr ] isnotan
independent degree of freedom. Although the atomic configuration at a boundary may change as
a result of relocation of the boundary plane, identical changes can be obtained with fixed bound-
ary location by appropriate changes of ¢ (Pond 1977).

TABLE 1. SYMMETRY CLASSES OF DICHROMATIC PATTERNS AND BICRYSTALS
(Nomenclature taken from Shubnikov & Koptsik, 1974)

number of
non-parallel symmetry class
translation p A —
axes dichromatic patterns bicrystals

0 point groups two-sided rosettes
1 crystallographic rods two-sided bands
2 layers layers
3 space groups

2.2. Symmetry classification of dichromatic patterns and bicrystals

Dichromatic patterns can have translational symmetry in zero, one, two or three dimensions,
thereby containing a singular point, line, plane or lattice respectively. The symmetry of patterns
with singular points and lattices can be classified respectively by using the conventional systems
comprising point groups and space groups (Infernational tables 1969). Patterns with one- and
two-dimensional translation symmetry can be classified respectively according to the one-
dimensional space groups of crystallographic rods and the two-dimensional space groups of
layers (Shubnikov & Koptsik 1974). It is noted that when the component crystal lattices have
identical lattice parameters and cubic symmetry, two-dimensional translation symmetry in a
dichromatic pattern is not posible. One-dimensional cases are possible, e.g. along [#£/] when this
is rational, and three-dimensional examples arise when [/kl] 6 leads to coincidence site lattices.
Thus dichromatic patterns with symmetry classes in the system of layer space groups occur only
for non-cubic crystal lattices, or where the component lattices have different lattice parameters or
Bravais classes. In the following text, the component lattices of a dichromatic pattern are always
taken to be cubic and with identical lattice parameter unless specifically stated to be otherwise.

Bicrystals are three-dimensional objects containing a singular plane, the interface, in which
there can be zero-, one- or two-dimensional translation symmetry. Appropriate systems for the
classification of such objects are respectively the symmetry classes of two-sided rosettes, two-
sided bands and layers. A two-sided rosette is a figure containing a singular plane and at least
one singular point. In two-sided bands and layers the singular plane contains respectively a
singular, and two non-collinear translation axes. The ¢ two-sided’ nature of these figures refers to
the fact that the singular planes need not be polar, i.e. that looking toward the ‘front’ and back’
of the plane need not be different. These symmetry classes for dichromatic patterns and bicrystals
are summarized in table 1.
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3. DICHROMATIC PATTERN SYMMETRY
3.1. Dichromatic patterns with t = 0

There are two distinct types of point symmetry element in dichromatic patterns: (a) ordinary
symmetry elements and (b) colour reversing symmetry elements. The former occur when identi-
cal symmetry elements of the black and white lattices are coincident in a dichromatic pattern,
e.g. when [Akl] is a symmetry axis or when black and white mirror planes or points with inversion
symmetry coincide. Such elements are denoted here by using the international symbols, i.e. m for
mirror plane, etc. Operation of ordinary symmetry elements always relates sites with identical
colour. All points on an ordinary symmetry element correspond to coincidences of points in the
black and white lattices which do not in general have the same form of internal coordinates but
have identical point symmetry higher than 1.

Operation of colour reversing symmetry elements always relates sites of different colour, or
neutral sites to neutral, and these symmetry elements are denoted by the prime on the inter-
national symbol, e.g. m’ for colour-reversing mirror plane. All points on colour reversing sym-
metry elements correspond to coincidences of points in the black and white lattices which have
identical form of internal coordinates. Points with colour reversing inversion symmetry, 1’, do
not occur in dichromatic patterns because their existence implies identical orientation and
magnitude of the basic translation vectors of the component crystal lattices. Colour reversing
rotation axes, #’, can only be evenfold, and arise when two ordinary u/2 fold rotation axes coin-
cide and 0 is 27 /u.

Asindicated in § 2.2, it is helpful to categorize dichromatic patterns according to the number of
non-collinear translation axes present. A dichromatic pattern with no translational symmetry
can be formed, for example, when [/£l] is irrational. In such cases only point symmetry can be
assigned, although this can be higher than 1; for example when any one of the crystallographically
equivalent descriptions [#£l] 0 is such that @ = m and [Akl] is irrational, a colour reversing mirror
plane is obtained on (%£l) so that the point symmetry of the dichromatic pattern is m’.

When [£kl] is rational there must be at least one-dimensional translation symmetry in a
dichromatic pattern, i.e. along [/k/]. For example, if [£l] is [001], the one-dimensional crystallo-
graphic rod space group is p4/mm'm’.

As mentioned above, dichromatic patterns formed from misorientated cubic lattices cannot
display two-dimensional translation symmetry. This follows because, if there is translation
symmetry parallel to [/mn] and [rst], there must also be translation symmetry parallel to [Imn] x
[rst]. However, dichromatic patterns with two-dimensional symmetry do occur, for example,
when hexagonal lattices with identical lattice parameter, a, but where the parameters ¢w and ¢y
(where w and b stand for white and black respectively) are such that ¢w/cp is irrational, are
misorientated by certain 6 about their common [0001]. Two-dimensional translation symmetry is
thereby obtained in the basal plane containing the origin, and the two-dimensional layer space
group is p6/m.

Next we consider dichromatic patterns, formed from misorientated cubic lattices, which have
three-dimensional translation symmetry. When [A47] is rational and 6 has special values a space
lattice of neutral sites, the coincidence site lattice (c.s.l.), is generated (see, for example, Grimmer
etal. 1974). C.s.1. have Bravais classes which depend on the Bravais class of the component lattices,
and [Akl]. C.s.1. are often characterized by a parameter, 2, defined as the ratio of the unit cell
volumes of the c.s.l. and white lattice.
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(@) T=3,P6'/m'm'm

(d) Z=9, Imm'm'
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Ficure 1. Projections along [hkl] of dichromatic patterns formed by centred cubic lattices: [kkl] 6 and X are as
follows: (a) [111] 60°, & = 3; (b) [001] 36.9°, X = 5; (¢) [111] 38.21°, X = 7; (d) [011] 38.9°, = = 9,
(e) [011] 50.47°, 2 = 11. The size of symbols represents the ... ABABA... stacking along [001] and [011] and
...ABCABCAB... along [111].
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Figure 1 shows the projections along [/kl] of five c.s.l. based dichromatic patterns, where [/4!]
is a symmetry axis of the white lattice which is either face-centred or body-centred cubic. The
main symmetry elements are indicated in the figure, but colour reversing mirror glide planes,
etc., generated in centred c.s.l. cells have been omitted for clarity. For each of these patterns the
three-dimensional space group is also shown in the figure. Inspection of figure 1 shows that
the disposition and interaction of colour reversing and ordinary symmetry elements conform to the
colour symmetry theorems (see, for example, Loeb 1971). For example, mirror planes in the zone
of a colour reversing rotation axis, such as 6’ in figure 1 (@), must be disposed alternately 7 and m’
(theorem 25).

It is noted that for dichromatic patterns with [#£/] = {001}, and irrespective of the number of
non-collinear translation axes present, the point group is always 4/mm’m’ unless 6 = }nn, where n
is an odd integer, when the point group becomes 8’ /mmm’. Similarly, for [hkl] = {011}, the point
group is mm'm’ for all values of 6 except 4nn when the group is 4’ /mmm’, and for [kl] = (111) the
group is 3m' unless § = }nn when it becomes 6’ /m'mm’. These special point groups containing
colour reversing rotation axes, #’, arise when ordinary rotation axes, #/2, coincide and 6 = n2x/u.

3.2. The variation of dichromatic pattern symmetry with displacement of the black lattice

When the black lattice is displaced by ¢ away from the neutral origin position the dichromatic
pattern changes. Such movements can never modify the number of translation axes present but
the space and point symmetry of the dichromatic pattern may be changed. In this section we
show first that dichromatic pattern symmetry is invariant for certain displacements, and secondly
we discuss the way in which symmetry changes for general displacements.

Consider a dichromatic pattern with ¢ = 0 based on a c.s.1.; in such a pattern there are anti-
translation vectors, i.e. vectors which join black sites to white. If the black lattice is displaced by an
anti-translation vector the original c.s.l. of neutral sites is recreated, but in general has its neutral
origin located at a new position. (Anti-translations in a dichromatic pattern do not define an anti-
translation lattice (Shubnikov & Koptsik 1974), i.e. a white Bravais lattice with black sites cen-
tring the edges, faces or body of the unit cell.) Bollmann (1g9770) has defined a monochromatic
lattice called the d.s.c. lattice associated with any given dichromatic pattern whose primitive
translation vectors are equal to the three shortest independent anti-translations in the dichromatic
pattern. Bollmann pointed out that displacements of the black lattice (lattice 2 in his terminology)
by any vector of the d.s.c. lattice, d#¢, reproduce the original pattern but may shift it in space. In
the present work we note that the initials d.s.c. conveniently stand for displacements which are
symmetry conserving, although this was not Bollmann’s original meaning. Thus, the identical
dichromatic pattern is obtained by the operations {[#kl] 6}, t and {[Akl] 6}, t + d=c.

The parameters of a d.s.c. lattice depend on the form of the associated dichromatic pattern; if
the dichromatic pattern is aperiodic the primitive d.s.c. vectors have vanishingly small magni-
tudes. In the cases of patterns with one-dimensional translation symmetry, the primitive d.s.c.
vectors are vanishingly small perpendicular to the translation axis, and equal to the basic trans-
lation vector along this axis. For patterns based on c.s.l., a d.s.c. lattice has parameters that are
related to those of the c.s.l., for example, they are reciprocally related in the case of simple cubic
lattices (Grimmer et al. 1974). In the case of the dichromatic pattern shown in figure 1 (), for
example, the d.s.c. and c.s.l. are both body-centred tetragonal.

It follows from the above discussion that dichromatic pattern symmetry varies periodically
with ¢. Thus, when studying the variation of symmetry with # it is only necessary to consider
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displacements which fall within the Wigner—Seitz (W.-S.) cell of the associated d.s.c. lattice. Such
displacements are referred to as reduced displacements and denoted ¢’. In the case of dichromatic
patterns,with no translational symmetry the W.-S. cell has zero volume, i.e. the pattern cannot be
changed by any displacement although the neutral origin may be shifted by very large distances
as a result of displacement. For patterns with one-dimensional translation symmetry the W.-S.
cell is a line parallel to the translation axis with magnitude |a| and centred on the neutral origin,
where a is the primitive translation vector of the pattern. In the case of patterns based on c.s.1.
the W.-S. cell is three-dimensional and has a volume that decreases as X increases.

Whereas displacements by ds¢ conserve all symmetry in a dichromatic pattern, displacement
by other vectors can conserve some of the symmetry elements originally present, while destroying
others. Displacements may be classified into two groups, namely:

(i) Displacements which conserve ordinary symmetry elements. An ordinary rotation axis
or mirror plane is conserved only by displacements parallel to that rotation axis or plane of
symmetry respectively. Such displacements ensure that points with identical point symmetry in
the black and white lattices remain coincident. Moreover, the location of the symmetry element is
invariant.

(ii) Displacements which conserve colour reversing symmetry elements. Rotation axes, «’,
withu > 2, are destroyed by any displacement ¢’. However, axes 2’ and planes m’ are conserved by
displacements which are perpendicular to these rotation axes and symmetry planes respectively.
Thus, for example, in a dichromatic pattern with ¢ = 0 containing a plane m’, and therefore an
axis 2’ perpendicular to this, a displacement ¢’ perpendicular to m’ conserves this mirror plane but
destroys the axis 2. The location of the colour reversing mirror is shifted by 3¢’. Conversely, if the
displacement is parallel to m’, and hence perpendicular to 2, the former is destroyed and the
latter survives, shifted by #’. Colour reversing screw diads and mirror glide planes can be created
from rational axes 2’ and planes m’ by displacements which have special magnitudes and are
parallel to these symmetry elements.

As an illustration of the survival of symmetry elements due to displacement, consider a di-
chromatic pattern formed initially by the operation {[001] 6}, t' = 0, i.e. a pattern with one-
dimensional translation symmetry parallel to [001]. As described above the rod space group is
p4/mm'm’; [001] is an ordinary four-fold axis perpendicular to ordinary mirror planes (002), and
the colour reversing mirror planes lie in the [001] zone orientated symmetrically between the
following four pairs of black and white mirror planes (100), ., (010)y 1., (110)y 5 and (110)y4.
Since the W.—S. cell of the associated d.s.c. latticeis a line parallel to [001] extending from — }a to
+ %a the symmetry of the pattern can only be changed by displacements along this line. Such
displacements are parallel to the ordinary fourfold axis, thereby preserving it, but are perpen-
dicular to the ordinary mirror plane, thereby destroying this, and parallel to the colour reversing
mirror planes, thereby destroying these. Thus the space group for any translation }a < t' < —}a
is p4; for translations ¢’ = + }a, colour reversing mirror glide planes are formed and the space
group is p4/ma’a’.

3.8. Equivalent dichromatic patterns

Whenever a dichromatic pattern with ¢’ = 0 contains both translation symmetry and point
symmetry higher than 1, there exists a set of dichromatic patterns, obtained from the initial
pattern by displacements of the black lattice, which are related by the symmetry elements of the
initial pattern. The members of such a set are said to be equivalent patterns, and the translations
t’ characterizing these are also related by the symmetry elements of the pattern with ¢’ = 0. An
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illustrative method for describing this property is first to construct the W.=S. cell of the d.s.c.
lattice associated with a given dichromatic pattern, and to superimpose on this the point sym-
metry elements of the dichromatic pattern with ¢’ = 0. Figure 2 shows the [A£[] projections of
such constructions for the c.s.l. based dichromatic patterns illustrated in figure 1. These con-
structions have two useful properties:

(i) the numerical point symmetry at a position located by ¢’ in such cells is identical to that of
the corresponding dichromatic pattern.

(ii) the number of equivalent dichromatic patterns in a set is equal to the number of points
equivalent to ¢’ in the cell.

Consider property (i) (see figure 2): the vectors b, and b, are the primitive translation vectors,
which are perpendicular to[4£l], of the d.s.c. lattices. Consider the W.—S. cell shown in figure 2 (4):
for the X = 5 system with an f.c.c. white lattice (figure 1(8)) by = %4[310], b, = {454[130]

m
T m
m' m'
- 7
o) t m
e 1 T
b, .ﬂ m!
o 4
° oo/ b, m'
° o
ole
| | | I \m!
| | | |
; i l i
(@) b, (0) b,

(c) (d)

Ficure 2. Projections along [hkl] of Wigner-Seitz cells of the d.s.c. lattices associated with the c.s.l. based
dichromatic patternsshown in figure 1: () [kkl] = (011}, (b) [kkl] = (001}, (c) [kkI] = (111), (d) [1kI] = (111},
Z = 3. All displacements shown are perpendicular to [AkZ].
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([#k1] 0 is[001] 36.9°). Figure 3 shows the dichromatic patterns corresponding to ¢’ = §(b, — b,),
1b,, —xb, and x(— b, + b,) which have point symmetries 4/mm'm’, mm'm’, mm’ and mm' respect-
ively. It is clear that the points located by ¢’ in the W.—S. cell, figure 2 (5), have identical point
symmetries to the corresponding dichromatic patterns. (It is interesting to note, for example,
that the point symmetry of the dichromatic pattern with ¢’ = 01is 4 /mm’m’ which is isomorphous
with that of the pattern where ¢’ = (b, — b,); the corresponding space groups are I4/mm'm’
and I4/mc'm’ respectively.) However, for certain displacements it is the numerical expressions

(a)

(c) (d)

Ficure 3. [001] projection of X = 5 dichromatic patterns, ([2kl] 0 = [001] 36.9°) with ¢’ % 0; ¢’ is indicated
by an arrow in each case and has the following form (a) §(b;— b,), (8) £b,, (¢) —xby, (d) x(by— b,), where
x < 3. The space groups for these patterns are given in table 2 (i). These diagrams can also be regarded as
[001] projections of twist bicrystals (§4.3), where the white bases are above the interface and the black below.
Note that the interface plane is located midway between a plane of small white bases and large black bases.
It follows for example that a 2’ axis in the interface plane must relate small bases to large ones of opposite
colour,

of the point symmetries that are identical, rather than the symmetry elements themselves. The
symmetry elements of a dichromatic pattern are expressed numerically in the following way;
m = 2, u-fold rotation = u. Thus, for example, the numerical expression, designated =z, of the
point group 3m is n = 6 and 4/mmm is n = 16. The latter example illustrates that only the
generating symmetry elements need be considered in enumerating z; an alternative definition
of nis the multiplicity of general points, irrespective of colour, in the point group in question. An
example of equal numerical point symmetry is obtained for a displacement xxz in figure 2 (5); the
point symmetry in the W.=S. cellism’ but the symmetry of the corresponding dichromatic pattern
is 2’ as shown in table 2(7).

Now consider the second property; associated with a pointlocated by #’ ina W.=S. cell there are
(r—1) additional points equivalent to the first and obtained by operating the point symmetry
elements of the dichromatic pattern (with ¢ = 0). ris the rank of the equipoint located by #’. For
example, in figure 2 (a) let the dichromatic pattern characterized by #’ be designated o. Since ¢/
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TABLE 2. VARIATION OF DICHROMATIC PATTERN SYMMETRY WITH RELATIVE DISPLACEMENT £’

{The coordinate system for specifying ¢’ is as follows: the origin is taken to be the centre of the Wigner-Seitz cell of
the associated d.s.c. lattice, x is parallel to by, y to b, and z to b, x b, (see figure 2).)

space group number

A
r Al
fractional coordinates inter-
of equivalent national  Shubnikov
displacements ¢’ rank  point symmetry space symmetry tables tables

(1) C.s.l.-based dichromatic pattern symmetry with [hkl] = {001).
(f.c.c. or b.c.c. crystal lattices)

000 1 &/mm'm’ I 4/mm'm’ 139 537
p 130 1 &/ mm’'m’ I 4/me'm’ 140 547
(Qi]/'”” 300 030 2 mm’m’ I mm’a’ 74 559
~ 00z 00z 2 4272’ I 422" 97 154
Z x00 0x0 4 mm’ I m’'m2’ 44 231
£00 0%0
> > xx0 Fx0 4 mm’ F m'm2’ 42 221
olm X% 0 FFO
= x0z 0xz 8 2’ ce 5 15
¥x0z 0xz
Eg x0zZ O0x2Z
F0Z 0%z
=« xxzZ Fxz 8 2 C 2 5 15
5“2 XXz XXz
X X zZ X X 2z
59 xFZ KiZ
&b, xy0 yx0 8 m Cm 8 32
Q<o x7O0 y©0
oz E70 750
== xy0 7x0
—= xyz Eyz 16 1 P1 1 1
xyz XYz
yxz yxz
yxz yixz
XYz Xy?z
XYZ XYz
YyxzZ yxz
yXzZ §i:z

(ii) C.s.l.-based dichromatic pattern symmetry with [hkl] = (011)
(& = 9 type cus.l, fic.c. crystal lattices)

000 — 1 m’'m’m Im'm'm 71 536
300 — 1 m’'mm’ I m’ma’ 74 559
030 — 1 m’mm’ I m’ma’ 74 559
x00 x00 2 m’m2’ I m’m2’ 44 231

o 0O0y0 070 2 m'm2’ I m'm2’ 44 231

\ <@ 00z 00z 2 222 1222 23 51

’_l'” x0z %02z 4 2/ a2’ 5 15

< 0z 02z

— o 0yz 0yz 2/ c2 5 15

o = 07z 0y z

28] xy0 Xy o0 4 m Cm 8 32

e x50 70

= O xyz Xyz 8 1 P1 1 i

T O xyz Xyz

=w XYZzZ Xy?z

— XYZ X7Z

5 Z (iii) C.s.l. based dichromatic pattern symmetry with [hkl] = (111}

EQ (& = 17 type, f.c.c. or b.c.c. crystal lattices)

s 000 1 3m’ R 3m’ 166 101

Q<3 00z 2 32’ R 32’ 155 47

oZ 1%o0 2 32’ R 32’ 155 47

:'§ 3100 3 2’ /m’ C2/m’ 12 62

o %00 6 m’ Ccm’ 8 34
X%z 6 27 Cc2’ 5 15
xyz 12 1 P1 1 1

1 Only one example of fractional coordinates is given in each case.
46-2
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460 R.C. POND AND W.BOLLMANN

in this case is perpendicular to [hkl], r = 4 and the point symmetry of the four corresponding
dichromatic patterns is m. These four patterns are referred to as equivalent patterns, and the
pattern labelled o’ in figure 2 (a), for example, can be obtained from o by operation of a colour
reversing mirror perpendicular to by, i.e. in the same way that the characteristic displacement for
o is obtained from #'. Filled and unfilled circles in figure 2 represent a colour reversed relation
between dichromatic patterns in an equivalent set. In figure 2 (4), for example, the dichromatic
patterns corresponding to the four open circles are all congruent, and related by colour reversing
mirror symmetry to the four congruent patterns represented by the filled circles.

This property of equivalent sets of pointsin a W.-S. cell can be expressed numerically. For a
dichromatic pattern obtained by the operation {[%#kl] 6} each set of r equivalent patterns will
have numerical symmetry z such that the product 7z is invariant with ¢’. For example, in the
case illustrated in figure 2 (a), r = 4 and n = 2. Note that for ¢’ = 0 the pattern has r = 1 and
n = 8, i.e. point symmetry mm'm’. A pattern corresponding to the most general displacement,
e.g. t’' (figure 2(a)) plus a component parallel to [££l] so that the point symmetry of the corres-
ponding dichromatic pattern is 1, will have » = 8 and n = 1. Table 2 (i)—(iii) documents the
variation of dichromatic pattern symmetry with ¢’ for examples of the cubic system where [££(] is
{100}, (110} and {111).

4. SYMMETRY OF BICRYSTALS
4.1, Orientation of symmetry elements in bicrystals

To manufacture an idealized bicrystal from a dichromatic pattern it is necessary to do two
things. First, the interface plane, (p¢gr) must be selected; the interface is considered to be a geo-
metrical dividing plane separating the black lattice sites from the white. Secondly, an atomic
group, or basis, must be located at each lattice site; let a black basis be associated with each black
lattice site below the interface plane and a white basis with each site above. A basis may be a
single atom, a group of atoms, or a molecule; in a given bicrystal black and white bases may be
different, in which case no colour reversing symmetry elements exist, or identical as in the case of
grain boundaries in simple metals. In bicrystals where black and white bases are physically
identical, the justification for retaining the concept of colour reversing symmetry elements is that
this simplifies considerations of, for example, the retention or destruction of bicrystal symmetry
elements as a result of relative displacement of the two crystals. The orientations of point sym-
metry elements in a bicrystal are restricted by the orientation of the interface plane as follows:

(1) ordinary rotation axes and mirror planes must be perpendicular to the interface because
they relate bases with identical colour;

(ii) colour reversing rotation axes can only be twofold; these, and also colour reversing mirror
planes can only exist parallel to an interface since they relate bases of different colour. (Colour
reversing roto—inversion axes cannot exist in bicrystals because these require that the basic
crystal translations are identical on either side of the interface.)

The presence and disposition of translation symmetry elements in a bicrystal is also restricted
by the orientation of the interface. In the case of bicrystals manufactured from dichromatic
patterns with one-dimensional translation symmetry, there will be no translation symmetry in a
bicrystal unless the interface plane is parallel to the translation axis. For bicrystals manufactured
from c.s.l. based dichromatic patterns, rational interface planes must contain two non-collinear
translation axes.
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Compound symmetry elements have orientational restrictions as for point symmetry elements;
e.g. colour reversing mirror glide planes can only exist parallel to an interface.

4.2. Bicrystal symmetry classification

The point group of a bicrystal must be a subgroup of that for the dichromatic pattern from
which it was manufactured. The symmetry elements present in a bicrystal will depend on the
orientation of the interface. This is illustrated by table 3 which lists the layer space groups of
bicrystals manufactured from the X' = 5 c.s.l. based dichromatic pattern with ¢ = 0 (figure 156).
Bicrystals with interfaces parallel to any other rational plane will have the layer space group p1,
i.e. two non-collinear translation axes but no point symmetry elements. The point symmetry of
the dichromatic patterns is 4/mm’m’, but it is seen from table 3 that it is not possible to manu-
facture bicrystals with point symmetries belonging to all subgroups of 4/mm’'m’, e.g. bicrystals
with point symmetry 4/m and 4m’m’ cannot be obtained. This is a consequence of the restriction
of bicrystal symmetry elements imposed by a choice of interface plane.

TABLE 3. HOLOSYMMETRIC BICRYSTAL STRUCTURES BASED ON THE 2 = 5
DICHROMATIC PATTERN WITH ¢’ = 0.

interface plane layer space
~ A \ group of
f.c.c. indexing c.s.l. indexing holosymmetric
bicrystal
(001) (001), p42:2’
(310), (130) (100),, (010), p2'mm’
(270), (120) (110),, (170), p2'mm’
({m0) (50), piml
(4, 31, 0), (34,1, 0) (0rs)gs (r0s), p121
(21, 0, (21,1, 0) (170),, (rr0), p12°1

The component crystals are f.c.c.; the faces of the c.s.l. unit cell have indices (310), (130), (001) and (100),,
(010),, (001),, where brackets without subscripts refer to the coordinate system of the white crystal, and those with
subscript ¢ refer to the c.s.l. I # m and r # s but all are integers.

The space groups listed in table 3 correspond to the holosymmetric bicrystals for each of the
interface orientations chosen. It is always possible to reduce the symmetry of these bicrystals by
relative displacement of the two crystals. As an illustration consider the bicrystal formed from the
X = b5 c.s.l. with ¢’ = 0 (figure 15) where the interface plane is (310) (i.e. parallel to the (100),
edge face of the c.s.l. unit cell). Table 3 indicates that the holosymmetric bicrystal structure has
point symmetry 2'mm’. In fact there are six structures, with different relative displacements, that
have symmetry isomorphous with 2’mm’ asillustrated in figure 4 (a)—(f). The symmetry elements
retained in bicrystals as a result of relative displacements follow precisely the same rules as for
symmetry elements in dichromatic patterns (section 3.2). Bicrystals with point symmetry in the
subgroup classes of 2'mm’, i.e. m, 2" and 1, can be obtained by appropriate displacements parallel
to the interface as illustrated in figure 4 (g)—(¢).

The (310) bicrystal discussed above is an example of a tilt bicrystal, i.e. one where the rotation
axis [kk[] is parallel to the interface. Figures 1 and 3, which were considered in § 3, can be regarded
as [hkl] projections of bicrystals where the interface is parallel to the page and the white bases are
above the page and the black below. (Note that neutral sites must become either black or white
bases.) Since [kk[] is perpendicular to the interfaces in all cases, these are examples of twist
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'

(@ pZmm’' (b) pZmm! (c) p2mm!
[310]

mLV ) '{7

2!
C O ¢

(d p2mb (e) p2mn’ (f) p2ima

1 2 n 1 >2)
e

F1GURE 4. Symmetry elements of the (310) £ = 5 bicrystal (f.c.c. crystals). The projection direction is [001] and
one repeat of the atomic structure immediately adjacent to the interface is shown to represent each bicrystal.
The direction of projection corresponds to [001], and the & axis of the coordinate system used to define the
layer space groups. The symbols ¢+’ indicate that the black crystal has been displaced out of the page.

TABLE 4. VARIATION OF LAYER SPACE GROUPS WITH RELATIVE DISPLACEMENT p; FOR (001)
TWIST BICRYSTALS BASED ON THE X = 5 DICHROMATIC PATTERN

fractional coordinates of
equivalent relative displacements illustration layer space

D; figure group rank
0 3(a) p42°2’ 1
1(b,+b;) 1(b) p42;2" 1
b, > 3by 3(b) $2,2'2 2
xb, » xb, 3(c) p12°1 4
—xby , —xb,
x(by+by) , x(by—by) 3(d) p12’1 4
—x(by+ by), —x(by—by,)
xby+yby, , xby—yb, P 8

—xb,+yby , —xby—yb,
yb,+xby , yb,—xb,
—yb,+xb, , —yb, —xb,
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boundaries. The layer space groups and relative displacements for these twist boundary structures
are given in table 4, and are discussed further later in this section.

4.3. Equivalent bicrystal structures

As for the case for dichromatic patterns, sets of equivalent bicrystal structures exist whenever
the holosymmetric bicrystal contains both translation symmetry and point symmetry higher than
1. Equivalent bicrystals have degenerate energy, and structures related by the point symmetry
elements of the holosymmetric structure. The relative displacements of equivalent structures are
also related by these symmetry elements.

To illustrate the existence of equivalent bicrystal structures it is helpful to construct a W.-S. cell
for relative displacements. Once the plane of a bicrystal interface has been chosen, all possible
idealized bicrystal structures can be produced by relative displacements parallel to the interface.
It is therefore convenient to use a W.-S. cell which is planar and parallel to the interface.

001 d m__
a“ﬂ . L . o

(@ - \/ o

A
ﬁ 0y m 9!
D A l
1a[130] m'
a[OOl] 3 m__ o
\ < 2
B f,
(b) o . %\m_y
C 6} C
?1 m. _ 9!
Jal210] ——l,ﬁ,
%a[i]ﬂ] m__ o
c o 5, C
ﬁ m ]
—v <2
|y )
o m
- 2!
D A
1alil4] l
ml

F1GURE 5. In-plane Wigner—Seitz cells for tilt boundaries in aluminium
(a) (310) X = 5, (b) (120) X = 5, (c) (221) = = 9.
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Displacements which fall within such in-plane W.-S. cells are termed reduced in-plane displace-
ments and designated p;i. In the case of bicrystals with one-dimensional translation symmetry in
the interface the in-plane W.-S. cell is a line parallel to the translation axis in the interface and is
identical to thatused for dichromatic patterns with one-dimensional translation symmetry. For bi-
crystals with two non-collinear translation axes, the most convenient in-plane W.-S. cell has been
described in detail by Pond (1977). This comprises a cell parallel to the interface bounded by ds¢
vectors which are not primitive for tilt boundaries. Figure 5 (a) shows the cell for the (310), 2= 5
bicrystal, where the adjacent crystals are f.c.c.,illustrated in figure 4; in this type of interface the in-
plane cell is simply the W.—S. cell of the white lattice vectors in the lowermost (620) atomic plane
of that crystal. Any idealized bicrystal can be represented by a point in this cell; such points simply
correspond to the projection onto the W.—S. cell of a site in the uppermost atomic layer of the black
crystal. We define a reference structure to be that structure represented by the point O, at the
centre of the cell. In the case of the (310) bicrystal the reference structure is designated O in figure
4 (b) and is holosymmetric for this interface plane. Other (310) structures with high symmetry are
designated A,B,Din figures 4 and 5 (@), and the classical coincidence structure is designated C and
C’. We note that in this latter structure the unique plane containing the symmetry elements also
contains neutral bases. This contrasts with the other structures shown in figure 4 which contain no
bases in the geometrical interface plane.

Once an in-plane W.-S. cell has been obtained, the number of structures in an equivalent set
can be found by superimposing on the cell the point symmetry elements of the reference structure.
The number of structures equivalent to one characterized by pj is simply the same as the number of
points equivalent to the point p; in the W.—S. cell. For example, consider the (310), ' = 5 structure
designated A in figure 5 (a). There are three additional equivalent structures obtained from A as
follows:

LAe Operation of the ordinary mirror plane (002).

A: Operation of 2’ (parallel to [130]); note that this operation does not produce Ae from A,
as might be expected on first inspection, because 2’ is a colour reversing symmetry opera-
tion and the structures are characterized by the displacement of the black crystal (always
the lower) away from the reference position.

Are Obtained from A by the combination of operations m and 2’.

These four and the reference structure are illustrated schematically in figure 6. It is clear that if
the white and black bases are identical, the colour reversed pairs of structures, e.g. A and A,
are physically identical and the pairs related by ordinary mirror symmetry, e.g. A and A, are
physical enantiomorphs.

The point symmetry of a bicrystal can be established from the position of its representation
point in the in-plane W.-S. cell. For example, consider again figure 5 (a); it is clear that the
bicrystal A has no point symmetry because the displacement from the reference structure, O, is
such as to destroy all of these initial symmetry elements (i.e. the displacement has a component
parallel to 2’ and m’, thereby destroying these, and perpendicular to m, thereby destroying this).
In addition, the number of equivalentstructuresr, is given by the rank of the representation point,
and the product of the numerical symmetry and the rank of a structure is invariant. Thus, the
product for the four structures A, Ae, Ar and Are is 1 x 4. The structures represented by points
O, A, B and D are all rank 1 positions with numerical symmetry 4 (see figure 4). Any structure
represented by a point on the 2’ axis, (or the edges of the cell parallel to this) but excluding the
rank 1 points, has rank 2 and symmetry m. Any structure represented by a point on OA, but
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excluding points O and A, will have symmetry 2’ and rank 2. Special comment is required for the
coincidence structures C and G’ (figures 4 a, ¢, and 54). According to figure 4 these structures have
symmetry 2'mm’, which is inconsistent with the procedure outlined above, which would suggest
symmetry m. This arises because one layer of bases in figure 4 (2) and (¢) have been coloured
neutrally; if this layer were either black or white the resultant symmetry would be 7 as required.
However, it should be noted that in a real bicrystal with black basesidentical to white a structure
with symmetry 2mm (dropping the colour reversing superscripts) is obtained for this special
relative displacement.

Are }\B

V
:

A
Do,

A, A
Ficure 6. Schematic representation of four equivalent bicrystal structures for the (310) X = 5 bicrystal. The

holosymmetric reference structure, O, and the symmetry elements relating the equivalent structures are also
shown.

217 2, v2'
Ficure 7. In-plane Wigner—Seitz cell for (001) twist boundary structures with the symmetry elements
of the holosymmetric bicrystal superimposed.

Consider next some examples of twist bicrystals as depicted in figures 1 and 3. In particular,
consider the X = 5 bicrystal, figure 1(b) and 3, which has [#£[] = [001] and (pgr) = (001). The
in-plane W.-S. cell for such a bicrystal is bounded by primitive ds¢ (Pond 1979), as is shown in
figure 7. The most convenient choice of reference structure is that manufactured from the di-
chromatic pattern with ¢ = (b, + b,), which has the layer space group p42'2’ (figure 34). If the
symmetry elements of this holosymmetric structure are superimposed on the W.-S. cell the struc-
tures equivalent to any given structure can be found. Apart from the reference structure, O,
represented by the point at the centre of the in-plane W.—S. cell, there is only one other rank 1
position. This is the corner of the cell, point A (figure 7), and represents the structure

47 Vol. 2g2. A
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manufactured from the coincidence dichromatic pattern (i.e. #' = 0, figure 1), for which the
in-plane displacement relative to the reference structure, pi,is (b, + b,) and the layer space group
421 2’. The point B corresponds to a rank 2 position and leads to the space group p2; 2'2. Points on
the lines OB and OA correspond to structures with the layer space group $121 and have rank 4.
For the most general structure, p; = xb; +yb,, where x and y are fractional and unequal, the
layer space group is p1 and there are eight equivalent structures. These (001) twist structures are
summarized in table 4.

It is clear that the product n;7;, where ; is the numerical point symmetry of a bicrystal with
rank r;, is invariant for a given bicrystal and is equal to np, the numerical point symmetry of the
holosymmetric form of that bicrystal. This conservation rule shows the importance of the holo-
symmetric form, even if this bicrystal does not exist in nature. We note that the conservation rule
is obeyed even in the case of the coincidence tilt grain boundary structures, C and C’, cited above
as a special case. These structures have numerical point symmetry n; = 4, but since C and C’ are
physically indistinguishable their rank is 1. Thus the product z; r; remains equal to the numerical
symmetry of the holosymmetric reference structure.

The equivalent bicrystal structures described in this work have been obtained by symmetri-
cally related rigid displacements of the lower crystal away from a reference structure, and local
atomic relaxation has not been considered. Local atomic relaxation may occur in such a way as to
leave unchanged, decrease or increase the symmetry of a given structure. However, the conser-
vation rule is still obeyed whichever type of relaxation occurs. If the symmetry is decreased the
rank increases correspondingly, and this will be reported in more detail in a later publication.

4.4. Symmetry of relaxed computer simulated grain boundaries

By using high speed computers it is possible to simulate an idealized bicrystal and allow its
constituent atoms to move according to the resultant forces which act on them. In the work of
Smith et al. (197%), Pond & Vitek (1977) and Pond et al. (1979), for example, tilt boundaries in
aluminium with [#£{] = {001) and {011) have been studied, and it was found that relaxation
occurs both by relative displacement of the two crystals and by local movement of individual
atoms. Although it was possible for local atom movements to destroy bicrystal symmetry elements
present following rigid relative displacements of the crystals, this was not found to occur in
mechanically stable structures. In other words, although local atom movements did occur in
addition to relative displacements, the former were always such as to conserve the symmetry
elements expected according to the position of the representation point in the in-plane W.-S. cell.
This occurred in spite of algorithms constructed to avoid restriction of atom movements due to
imposed symmetries (see §5) and relaxation procedures in which relative displacement and local
movements could occur simultaneously.

Figure 5 (a)—(c) show the in-plane W.—S. cellsfor X' = 5 (310), X' = 5(120) and X' = 9(221) grain
boundaries between f.c.c. crystals. Singular points, O, A, B, D, corresponding to holosymmetric
structures are indicated, and the relaxed mechanically stable structures are denoted by lower
case Greek letters with grain boundary energy, v, increasing in the order a, B, 8. Subscripted
structures, e.g. oy, o, correspond to equivalent structures. It is particularly noteworthy that
many structures retained the ordinary mirror symmetry, m, and that the (310) B, and (221) o
and B structures are holosymmetric. We also note that the classical coincidence structure C and
C’ were not found to be favourable, i.e. low v, structures. The full details of y, and relative
displacements for these boundaries, have been published (Smith ez al. 1977; Pond ef al. 1979). In
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all cases there was relaxation perpendicular to the boundary, i.e. decreasing the density of the
boundary material, but this does not destroy any of the symmetry elements shown in figure 5.

Twist boundary structures formed between crystals of Cu and Ni with [Akl] = [001] and
(pgr) = (001) have been studied by Bristowe & Crocker (19%8). They find that, for both types of
metal, three stable bicrystals with similar energy exist, corresponding to points O, A and B in
figure 7, in the 2' = 5, 13, 17 and 25 systems. Moreover, in spite of local atomic movements in
addition to relative displacements in these relaxed bicrystals all the symmetry elements expected
in idealized bicrystals represented by points O, A and B were conserved.

5. INTERFACIAL DISLOCATION NETWORKS
5.1. Burgers vectors of interfacial dislocations

The term ¢ interfacial dislocation’ is used here to describe special dislocations which exist in
interfaces. All grain boundary structures can be considered as arrays of primary, or crystal, dis-
locations but these may have a formal significance only since they may be very closely spaced.
Primary dislocations are excluded from our present considerations. Any structure that contains
translation symmetry can be dislocated, and the presence of point symmetry in a structure is
immaterial as far as the nature of perfect dislocations is concerned. In this section we shall deal
with interfacial dislocations in grain boundaries based on c.s.l. Bollmann (1970) has shown that
for such cases the basic translation vectors of the associated d.s.c. lattice are possible Burgers
vectors of perfect interfacial dislocations, and he has termed such dislocations secondary disloca-
tions. We note the following very important distinction between secondary and primary disloca-
tions; whereas the Burgers vectors of primary dislocations are the basic translation vectors of the
underlying crystal lattice, the Burgers vectors of secondary dislocations are not in general equal to
translation vectors which exist in the interface in question. The essential feature of dsc vectors
which qualifies them as secondary dislocation Burgers vectors is that displacements of the black
lattice by ds¢ recreate the identical dichromatic pattern. Therefore, identical bicrystal struc-
tures can be obtained from the dichromatic pattern before and after displacement. However, as
noted in § 3, after displacement the origin of the dichromatic pattern may be shifted in space, and
as a consequence of this secondary dislocations can have interfacial steps associated with their
cores (see for example, Pond 1977). Numerous experimental observations of secondary disloca-
tions have been reported; for example, Balluffi e al. (1972). Dislocations have been observed in
bicrystals based on dichromatic patterns with one-dimensional translation symmetry (Darby
et al. 1978), but these are partial dislocations in the sense that their Burgers vectors are parallel to
the basic d#¢ vector but are only half the magnitude of the latter.

5.2. Secondary dislocation networks comprising perfect dislocations

An important function of networks of secondary dislocations is to accommodate small angular
deviations from favourable bicrystal structures, such as those known to be based on certain c.s.l.
Warrington & Bollmann (1972) showed that such secondary dislocation networks can be treated
similarly to subgrain boundaries. The form and symmetry of a network depend on the angular
deviation from the c.s.l. misorientation in question, and the plane of the interface. We note that
the actual relative displacement at a boundary is irrelevant to the treatment of networks of
perfect secondary dislocations provided we assume that only one interface structure, i.e. a rank1

structure, is present.
47-2
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468 R.C.POND AND W.BOLLMANN

A procedure for predicting the form of secondary dislocation networks has been presented by
Bollmann (1970) using the ¢ O’-lattice method, and this is briefly outlined below. First the b-
lattice is constructed; this is the d.s.c. lattice associated with the exact coincidence misorientation.
The b-lattice is intersected by the b-subspace which is a plane passing through the origin of the
b-lattice perpendicular to the axis of rotation which represents the deviation from the coincidence
orientation. Those points of the b-lattice on or in the immediate vicinity of the b-subspace, are
connected to form the b-net. The Burgers vectors of ds¢ vectors in the b-net are those which can
be used to form a secondary dislocation network ensuring that in the network the summation of
Burgers vector parallel to the rotation axis of deviation is zero.

To construct the dislocation network from the b-net, tracing paper is placed over a drawing
of the b-net and the centres of all the neighbouring polygons of the b-net are connected by lines.
This drawing represents a twist dislocation network. To obtain the correct orientation and size,
the drawing should be expanded by 1/(2sin ¢) and rotated by $¢ — 90°, where ¢ is the angular
deviation.

The Burgers vector of a drawn dislocation line is that vector in the b-net which has been crossed
on drawing the line. The relative orientation of the Burgers vector to the dislocation line is
determined by the rotation of the dislocation network with respect to the b-net. The relation
between the sign of the Burgers vector and the dislocation line sense is given by the duality
relation D4 (Bollmann (1970), p. 123). Finally, the network obtained must be projected per-
pendicularly onto the interface plane.

As a simple illustration consider a twist grain boundary separating two identical hexagonal
crystals where the rotation axis is the common [0001] and 6 is close to a value leading to a c.s.l.
Thus, the secondary dislocation network is a simple twist network. Figure 8 () shows the b-net
for this bicrystal on the right and the expected dislocation network on the left. The change of
scale and orientation are indicated. The dashed network in the b-net of figure 1 (a) represents not
only the first stage of construction of the network from the b-net but also the in-plane W.-S.
cell for this bicrystal.

5.3. Secondary dislocation networks comprising partial dislocations

In the previous section we considered an interface having a unique structure. Dislocations in
such an interface must be perfect ds¢ dislocations. In this section we consider the modifications to
dislocation networks when an interface can contain regions with two or more different but
equivalent structures. In such bicrystals, dislocations can exist which separate regions of interface
with equivalent structures. The Burgers vectors of such dislocations can have considerably smaller
magnitudes than ds¢ dislocations, and examples of the dissociation of perfect ds¢ dislocations into
partial dislocations have been observed experimentally (Pond 1977).

The new step in the procedure to predict a dislocation network is to consider the decomposition
of ds¢ vectors in the b-net. Figure 8(5) shows an example, in the hexagonal boundary con-
sidered above, where the black crystal has been displaced by p; from the rank 1 reference position.
The rank 1 bicrystal could have point symmetry 62’, and the displaced structure has point
symmetry 1 only and rank 12. The resulting dislocation network contains 12-, 6- and 4-fold
nodes. Naturally the contrast of the dislocation lines in electron micrographs would vary, depend-
ing on the diffraction condition and the size and orientation of the Burgers vectors.

Relative displacements pj corresponding to structures with rank lower than 12 cause certain
dislocations to ‘ fade out’ from the network. Figures 4(c) and (d) correspond to two different
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rank 3 structures. Thus, the form of the dislocation network depends on the rank o fthe underlying
structure. However, the symmetry of the network, including the relative magnitudes of Burgers
vectors, is unaltered by this. The symmetry of dislocation networks can be classified according to
the seventeen space groups of two-dimensional networks (Shubnikov & Koptsik 1974). In the
present case the symmetry of the b-nets and dislocation networks is always p6mm. It is interesting
to note that b-nets are always planar isogons, i.e. all vertices are identical or mirror related, and
networks are figures complementary to these called plane isohedra, i.e. figures comprising equal
polygons fitting the plane with no gaps (Shubnikov & Koptsik 1974).

Further changes to network tessellation occur if more than one non-equivalent interface
structures are stable. Figures 8 (¢) and (f) show examples of network tessellations when the ref-
erence structure (rank 1) and the rank 3 structures in figures 8 (¢) and (d) respectively are stable
and have similar y. We note that the symmetry of the network remains p6mm.

6. DiscussioN

The foregoing sections have shown how the space and/or point symmetry of bicrystals can be
classified. In general, bicrystals consisting of two different phases tend to be low symmetry struc-
tures but grain boundary structures can exhibit high symmetry. It is felt that the use of colour
symmetry has helped to simplify various aspects of bicrystal symmetry, especially in the discussion
of equivalent structures. It has also been shown why an understanding of the symmetry of dichro-
matic patterns is valuable; these symmetry elements govern the symmetry of all possible bicrystals
that can be created from a given dichromatic pattern, and the Burgers vectors of interfacial
dislocations correspond to anti-translations in dichromatic patterns rather than interfacial
translation symmetry in bicrystal structures.

Several results of interest may be noted from this investigation of bicrystal symmetry. For
example, it is clear that classical coincidence grain boundary structures are not necessarily
unique in the sense that other structures with equally high symmetry obtained by relative dis-
placement from the coincidence structure can exist on a given interface. Also, interface structures
based on c.s.l. can have identical point symmetry even though, for example, [44/] is {001) in one
case and (011) in the other. As an illustration, consider a twist boundary with [%£[] = [001], such
as is shown in figure 3 () where p; = }b,; this bicrystal has the layer space group $2;2'2, while a
bicrystal with [#kl] = [011], such as is shown in figure 1 (d) has the space group $212;2. Thus, by
invoking Neumann’s principle, we see that the symmetry of certain physical properties of these
(001) and (011) twist boundaries could be identical. It has also been shown that an experimental
investigation of the tessellated form of secondary dislocation networks accommodating small
angular deviations from coincidence misorientations could give information concerning the
presence of equivalent interfacial structures.

A useful application of bicrystal symmetry is for the investigation of interfacial structure by
atomistic calculation using computers. The nature of atomistic relaxations will depend on the
symmetry of the bicrystal. Consider a bicrystal modelled in a computer with central forces as an
approximation to interatomic forces. The symmetry of the force field, i.e. the interaction of all
forces in the bicrystal, must be at least as high as the bicrystal symmetry. In other words, if an
initial bicrystal is constructed with a given relative displacement no forces can act to destroy any
of the symmetry elements present in the initial structure. Therefore, for example, any forces
acting which tend to give rise to further relative displacement of the two crystals, must act to
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conserve the initial symmetry and hence must act parallel to the directions of relative displace-
ment which conserve those symmetry elements as explained in §§3 and 4. If an initial bicrystal
contains two non-collinear axes 2, for example, no further relative displacement can occur,
because any movement would destroy some of this symmetry. Thus, we can deduce, for example,
that (001) twist boundary structures with relative displacements p; = 0, b, and (b, + b,) (i.e.
points O, A and B in figure 7) are metastable structures. Avoiding such metastable structures, or
checking their stability to further small relative displacements, is a well known problem in atom-
istic calculations. It is suggested that consideration of bicrystal symmetry can streamline the
design of algorithms to avoid calculated structures caught in the ¢ symmetry trap’.

It is possible that certain symmetry elements are associated with bicrystal stability in a way
analogous to the well known role of points with inversion symmetry insimple lattices. For example,
consider the symmetry of the 2 = 5 (310) and (210), and 2 = 9 (221) bicrystals computed to be
stable according to figure 5. It is particularly noteworthy that for all of these tilt structures the
ordinary mirror plane perpendicular to the tilt axis has been conserved. The bicrystals repre-
sented in figure 5 are composed of f.c.c. crystals. However, simulations of tilt bicrystals comprised
of b.c.c. (Bristowe & Crocker 1975) and orthorhombic polyethylene (Geary & Bacon 1976) show
identical behaviour; in both of these cases the holosymmetric bicrystals have layer space group
p2'mm’ but relax to stable configurations with the layer space group piml, by relative displace-
ments perpendicular to the tilt axis. In general, no restoring forces arise as a result of relative
displacements p{ which are perpendicular to the tilt axis. Exceptions to this rule are the holo-
symmetric structures such as X' = 5 (310) B, 2 = 5 (210) 3, X' = 9, (221) a, B, (see figure 5).

Since ordinary mirror symmetry appears to be associated with stability of bicrystals in a direc-
tion perpendicular to the mirror plane, it is expected that bicrystals with more than one non-
parallel ordinary mirror plane are stable with respect to any additional relative displacement. An
example where this is true is the coherent (111) twin boundary (2 = 3) between f.c.c. crystals at
the classical coincidence relative displacement; the layer space group in this case is p6'm2’ (this
space group could alternatively be written p3/m'm2’ which has the advantage that it is consistent
with the premise set down in § 4.1 that only non-colour reversing rotation axes can be normal to an
interface plane. Note also that the interface plane contains neutral bases in this case).

The coherent (111) X' = 3 bicrystal is the most highly symmetric possible, and we note that its
point symmetry does not include inversion symmetry. No bicrystal can include points of inversion
symmetry in its unique plane since the existence of these would require that the basic translation
vectors and their orientation be identical on either side of that plane. This feature of bicrystals
may be contrasted with the important role of inversion symmetry in the stability of structures
based on simple lattices. Certain faulted single crystals may be regarded as ‘bicrystals’ and
there can be points of inversion in the fault plane. Two examples are antiphase domain bound-
aries and f.c.c. crystals separated by a stacking fault on (111); in the latter case the layer space
group is p3'm1.

The role of symmetry elements in the stability of bicrystals may also be discussed in terms of y
surfaces. The y surface for a bicrystal is a contoured surface based on the in-plane W-S cell such
that the height of the surface at a point corresponding to a structure with fixed pj is proportional
to vy for that structure (local atomic relaxation is allowed for each structure). If a holosymmetric
bicrystal has both translation symmetry and point symmetry higher than 1, equivalent bicrystal
structures can exist. Thus, equivalent pointsin the W.=S. cell will lead to points of equal height on
the y surface. The gradient of the surface dy/d(pj) at any point corresponds to the overall force
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tending to cause additional relative displacement from the structure corresponding to p;.
Evidently dy/d(pi(perp)) = 0 for all stable structures described in figure 5, where pi(perp) is a
relative displacement in a direction perpendicular to the ordinary mirror planes. At points
on the y surface corresponding to structures with more than one non-parallel symmetry axis
parallel to the interface dy/d(p;) = 0, i.e. the position must be a local minimum or maximum
on the y surface. Local maxima correspond to metastable structures caught in the symmetry
trap whereas local minima correspond to structures with some measure of stability. Thus,
symmetry positions on a y surface must correspond to stationary points, but this does not
preclude the possibility of deep local minima, i.e. favourable structures, occurring at points
corresponding to bicrystals with no point symmetry.
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F.R.S., for helpful comments, to Professor D. Hull for encouragement, and one author (W.B.)
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